Environmental Drivers of Benthic Flux Variation and Ecosystem Functioning in Salish Sea and Northeast Pacific Sediments
نویسندگان
چکیده
The upwelling of deep waters from the oxygen minimum zone in the Northeast Pacific from the continental slope to the shelf and into the Salish Sea during spring and summer offers a unique opportunity to study ecosystem functioning in the form of benthic fluxes along natural gradients. Using the ROV ROPOS we collected sediment cores from 10 sites in May and July 2011, and September 2013 to perform shipboard incubations and flux measurements. Specifically, we measured benthic fluxes of oxygen and nutrients to evaluate potential environmental drivers of benthic flux variation and ecosystem functioning along natural gradients of temperature and bottom water dissolved oxygen concentrations. The range of temperature and dissolved oxygen encountered across our study sites allowed us to apply a suite of multivariate analyses rarely used in flux studies to identify bottom water temperature as the primary environmental driver of benthic flux variation and organic matter remineralization. Redundancy analysis revealed that bottom water characteristics (temperature and dissolved oxygen), quality of organic matter (chl a:phaeo and C:N ratios) and sediment characteristics (mean grain size and porosity) explained 51.5% of benthic flux variation. Multivariate analyses identified significant spatial and temporal variation in benthic fluxes, demonstrating key differences between the Northeast Pacific and Salish Sea. Moreover, Northeast Pacific slope fluxes were generally lower than shelf fluxes. Spatial and temporal variation in benthic fluxes in the Salish Sea were driven primarily by differences in temperature and quality of organic matter on the seafloor following phytoplankton blooms. These results demonstrate the utility of multivariate approaches in differentiating among potential drivers of seafloor ecosystem functioning, and indicate that current and future predictive models of organic matter remineralization and ecosystem functioning of soft-muddy shelf and slope seafloor habitats should consider bottom water temperature variation. Bottom temperature has important implications for estimates of seasonal and spatial benthic flux variation, benthic-pelagic coupling, and impacts of predicted ocean warming at high latitudes.
منابع مشابه
Relative Contributions of Biodiversity and Environment to Benthic Ecosystem Functioning
Current concern about biodiversity change associated with human impacts has raised scientific interest in the role of biodiversity in ecosystem functioning. However, studies on this topic face the challenge of evaluating and separating the relative contributions of biodiversity and environment to ecosystem functioning in natural environments. To investigate this problem, we collected sediment c...
متن کاملQuantifying tidally driven benthic oxygen exchange across permeable sediments: An aquatic eddy correlation study
Continental shelves are predominately ( 70%) covered with permeable, sandy sediments. While identified as critical sites for intense oxygen, carbon, and nutrient turnover, constituent exchange across permeable sediments remains poorly quantified. The central North Sea largely consists of permeable sediments and has been identified as increasingly at risk for developing hypoxia. Therefore, we in...
متن کاملIntrogression among three rockfish species (Sebastes spp.) in the Salish Sea, northeast Pacific Ocean
Interspecific hybridization is often seen as a major conservation issue, potentially threatening endangered species and decreasing biodiversity. In natural populations, the conservation implications of hybridization depends on both on anthropogenic factors and the evolutionary processes maintaining the hybrid zone. However, the timeline and patterns of hybridization in the hybrid zone are often...
متن کاملStatistical Modeling of Variability in Sediment-Water Nutrient and Oxygen Fluxes
Mineralisation of organic detritus in the marine surficial sediments generates a flux of dissolved inorganic nutrient between the sediment and overlying water column. This is a key process in the marine ecosystem, which links the food webs of the sea-floor and the overlying water-column, and is potentially affected by a range of interacting environmental and sedimentary factors. Here, we use Ge...
متن کاملVirus decomposition provides an important contribution to benthic deep-sea ecosystem functioning.
Viruses are key biological agents of prokaryotic mortality in the world oceans, particularly in deep-sea ecosystems where nearly all of the prokaryotic C production is transformed into organic detritus. However, the extent to which the decomposition of viral particles (i.e., organic material of viral origin) influences the functioning of benthic deep-sea ecosystems remains completely unknown. H...
متن کامل